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PREDICTING BONE METASTATIC POTENTIAL OF PROSTATE CANCER VIA COMPUTATIONAL MODELING 

OF TGF‐β SIGNALING 

 PI: Carlton R. Cooper, Co‐PI: Babatunde A. Ogunnaike 10/05 – 5/07; No‐cost extension granted to 5/08 

INTRODUCTIONS 

The TGF‐β1 family is part of a collection of cytokines responsible for controlling a wide range of cellular 
processes involved with growth and proliferation [1]. In particular, TGF‐β1 is generally known as a 
potent inhibitor of proliferation in normal epithelial cells.  However, in cancer cells, it is also known to 
induce cellular dynamics necessary for metastasis; and its level is elevated in patients with prostate 
cancer, raising some fundamental questions [5, 4, 3, 2]: (i) how can a single stimulus produce multiple 
contradictory results in different cell types; and (ii) can an understanding of this phenomenon be 
harnessed for more precise prediction of metastatic potential of prostate cancer? From currently 
available information in the literature, the role of TGF‐β on prostate cancer development and metastasis 
is clearly too complex for a qualitative description to be useful in answering these questions: to 
understand the various, and sometimes contradictory, effects of TGF‐β on prostate cancer cells, true 
quantitative insight that will enable predictive understanding requires mathematical modeling of the 
phenomena of TGF‐β signaling in normal and cancerous cells 

BODY 

 

Fig 1.  Proposed PCa cell model plan and experimental conditions to be investigated. 

This hypothesis generation project involved the development of a computational model of the TGF‐β 
signaling pathway and investigating whether such a model can be used to generate hypotheses 

regarding metastatic potential of PCa.   We now have a comprehensive quantitative model of TGF‐β 
signaling that is representative of a wide variety of experimental data collected in different labs 
worldwide.  The primary outcome of the project is the following set of related conclusions: (i) it is 
possible to use such a model to predict metastatic potential of PCa; but (ii) to do so appropriately 
requires a deeper 
quantitative understanding of 

the role of TGF‐β as a 
regulator of prostate gland 
function; and in this regard, 
(iii) that the primary role of  

TGF‐β as a tumor suppressor 
may still be intact so that the 
observed over‐expression in 
poor prognosis PCa patients is 
due to changes in the PCa 
cells and not in the ligand.  

A full account of the model 
development and results is 
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Fig 2.  Western Blot of Smad 2 phosphorylation: LNCaP and C4-
2 were treated with 10ng/ml of TGF-β1 with protein isolated at 
specific time intervals and probed for Smad 2 phosphorylation. 
Actin is used as a loading control. 

contained in Chung et al, 2008, (submitted for publication.) This project has enabled us to generate 
hypotheses and ideas that we are currently exploring 
in an “Idea Generation Proposal” recently submitted 
to the DoD.  In this newly proposed work, we will 
extend the model to represent specific stages of PCa 
progression as illustrated in (Fig. 1) in addressing point 
(ii) above, and then develop a control‐system model of 
TGF‐β1‐mediated regulation of the prostate gland 
regulation to investigate the idea expressed in point 
(iii) above about the role of TGF‐β1 as a tumor 
suppressor in both normal and PCa cells.  Specifically, 
we will investigate the idea that as a result of a control 
system that employs TGF‐β for prostate gland 
regulation, the observed increased level of TGF‐β in 
poor prognosis PCa patients is a consequence of 
acquired TGF‐β resistance in the prostate cancer cell, 
not the cause. 

The key results of the 
experimental 
component of the 
project are as follows: 
the biological data we 
collected demonstrate 
that as a non‐metastatic 
cell line (LNCaP) 
progresses to a more 
aggressive cell line (C4‐
2B4), adhesion to bone‐
marrow endothelial 
cells ( BMEC) decreases 
in response to TGF‐β1; 
there is also an increase in the 
ability of TGF‐β1 to inhibit prostate cancer growth, and an increase in TRII and TRI expression. Further, 
our experiments also demonstrated (Fig 2) that TGF‐β1‐mediated Smad2 activation was delayed and 
attenuated in the more aggressive C4‐2 subline compared to LNCaP. TGF‐β1 activated Smad2 within 30 
minutes in LNCaP, but 2 hours were required to activate Smad2 in C4‐2. Further, the level of Smad2 
activation was higher in LNCaP compared to C4‐2.   In support of attenuated TGF‐β1 signaling, C4‐2 was 
more resistant to TGF‐β1 growth suppression compared to LNCaP (Fig 3). Bone marrow derived C4‐2B4 
and PC‐3 cells are more sensitive to TGF‐β1‐induced growth suppression, which is surprising considering  
that the bone matrix is a repository for TGF‐ β1. Some of these results were presented at the 2007 
IMPaCT conference.  

Fig 3. The effect of TGF-β1 on the growth of PC cells with varying metastatic potential.  
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During the award period, the participating graduate students, Ms. Fayth Miles in the Biological Sciences 
Dept., and Mr. Seung‐Wook Chung in the Chemical Engineering Dept. respectively published a paper, 
and successfully defended a Master’s thesis on the work done on this project.  They are both continuing 
work on their respective PhD dissertations.  A joint paper (Chung et al, 2008) has been submitted for 
publication in the Biophysical Journal; a copy of the manuscript is attached. 

KEY ACCOMPLISHMENTS 

The major accomplishments are as follows: 

1. Experimentally, we demonstrated differential TGF‐β1 signaling in prostate cancer cells with 
varying metastatic abilities; 

2. We also demonstrated that  differential TGF‐ β1 signaling in prostate cancer  cells correlate to  
their sensitivity to TGF‐ β1 mediated growth suppression; 

3. We have developed a quantitative model of the TGF‐ β1 signaling pathway and used it to 
generate several hypotheses that we plan to investigate in a recently submitted Idea proposal 
(see attached abstract). 

 

REPORTABLE OUTCOMES 

See attached Manuscript and review article in the appendices 

 

CONCLUSIONS 

A computational model of the TGF‐β signaling pathway (supported by experimental data) can in fact be 
used to generate hypotheses regarding metastatic potential of PCa, but this requires a deeper 

quantitative understanding of the role of TGF‐β as a regulator of prostate gland function. In this regard, 
this hypothesis exploration study has led directly to the generation of the hypothesis that the observed 
increased level of TGF‐β in poor prognosis PCa patients is a consequence of acquired TGF‐β resistance in 
the prostate cancer cell, not the cause. We plan to explore and test this hypothesis in a recently 
submitted “Idea Generation” proposal entitled “A computational modeling approach to elucidating the 

complex role of TGF‐β in prostate cancer progression” 

REFERENCES 

  1.  Akhurst, R.J., and Derynck, R. (2001). TGF‐beta signaling in cancer‐‐a double‐edged sword. 
Trends Cell Biol 11, S44‐51. 

  
  2.  Miles, F.L., Pruitt, F.L., van Golen, K.L., and Cooper, C.R. (2008). Stepping out of the flow: 

capillary extravasation in cancer metastasis. Clin Exp Metastasis 25, 305‐324. 
  

3



  3.  Tu, W.H., Thomas, T.Z., Masumori, N., Bhowmick, N.A., Gorska, A.E., Shyr, Y., Kasper, S., Case, 
T., Roberts, R.L., Shappell, S.B., Moses, H.L., and Matusik, R.J. (2003). The loss of TGF‐beta 
signaling promotes prostate cancer metastasis. Neoplasia 5, 267‐277. 

  
  4.  Wikstrom, P., Damber, J., and Bergh, A. (2001). Role of transforming growth factor‐beta1 in 

prostate cancer. Microsc Res Tech 52, 411‐419. 
  
  5.  Wikstrom, P., Stattin, P., Franck‐Lissbrant, I., Damber, J.E., and Bergh, A. (1998). Transforming 

growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in 
prostate cancer. Prostate 37, 19‐29. 

  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4



Appendices 

Quantifying the Role of TGF-β1 in Prostate Cancer Metastasis: 
Computer Modeling and Experimental Studies 

Fayth L. Miles, Seung-Wook Chung, Robert A. Sikes, Babatunde Ogunnaike and Carlton Cooper 
 

TGF-β1 is generally known as a potent inhibitor of proliferation in normal 
epithelial cells.  However, in cancer cells, it is also known to induce cellular dynamics 
necessary for metastasis; and its level is elevated in patients with prostate cancer, raising 
some fundamental questions: (i) how can a single stimulus produce multiple 
contradictory results in different cell types; and (ii) can an understanding of this 
phenomenon be harnessed for more precise prediction of metastatic potential of prostate 
cancer? From currently available information in the literature, the role of TGF-β on 
prostate cancer development and metastasis is clearly too complex for a qualitative 
description to be useful in answering these questions: to understand the various, and 
sometimes contradictory, effects of TGF-β on prostate cancer cells, true quantitative 
insight that will enable predictive understanding requires mathematical modeling of the 
phenomena of TGF-β signaling (and transcriptional regulation) in normal and cancerous 
cells. 

We have used the LNCaP Progression Model of increasingly metastatic lineage-
related prostate cancer cells to study the effects of TGF-β1 on metastasis and to construct 
a dynamic mathematical model used to quantify TGF-β1-stimulated bone-metastatic 
potential of prostate cancer cells at different stages in metastasis (Fig. 1).  The 
experimental results show, among other things, that at the cell population level, TGF-β1 
appears to regulate growth as well as adhesion to bone marrow endothelium differentially 
in nonmetastatic and metastatic PCa cells; growth is inhibited in C4-2 and C4-2B4 cells 
but not in LNCaP; there is a decrease in the TGF-β1-induced adhesion of C4-2 and C4-
2B4 to BMEC; and there is no change in PCa adhesion to TGF-β1-treated BMEC, 
suggesting that the changes in adhesion are the result of activation of TGF-β1 signaling 
in the PCa cells, and not BMEC. In addition, western blot data show that the classic TGF-
β1 Type II receptor is expressed at similar, albeit low levels in LNCaP and C4-2 cells, 
and higher levels in the bone-derived C4-2B4 cells. Additional results show that Smad 2, 
one of the main effectors in the pathway, is activated in both LNCaP and C4-2, with 
earlier and more robust activation in LNCaP.   

While it is evident that all the cell lines have active TGF-β1 signaling pathways, 
the detailed mechanism of how TGF-β1 induces different responses via signaling 
effectors during cancer progression remains poorly understood. To identify and quantify 
the role of TGF-β1 in cancer metastasis, we have developed a dynamic mathematical 
model of the TGF-β1 signaling pathway for normal prostate epithelial cells (PrEC) and 
three prostate cancer cell lines, LNCaP, C4-2, and C4-2B4 (Figure 1). The model is used 
to analyze the characteristics of the pathway in terms of the dynamic behavior of the 
signaling effectors, and determine which steps are most critical and sensitive.  In silico 
mutations, (simulations of discrete mutation events) are used to understand how 
variations in the TGF-β pathway during progression affect specific metastatic events such 
as adhesion and eventually migration. Overall, the information generated from this 
investigation could be useful for accurately predicting the metastatic potential of 
advanced localized prostate cancer and subsequently better select patients for more 
aggressive therapy. 
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Figure 1. Discrete states in prostate cancer progression 
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ABSTRACT 
Transforming growth factor β (TGF-β) signaling regulates a wide range of cellular and 
physiologic processes including proliferation, cell survival, differentiation, migration, 
angiogenesis, and immune surveillance. It therefore is not surprising that this ligand plays a 
significant role in the development and progression of cancer. The current consensus is that 
TGF-β affects tumor pathogenesis both positively and negatively, functioning as a tumor 
suppressor in the premalignant stages of tumorigenesis and as a tumor promoter in later stages of 
cancer leading to metastasis. Despite its prominent role in both normal and cancerous cellular 
processes, the detailed mechanisms of how TGF-β induces such diverse and sometimes 
contradictory responses remain poorly understood. As a first step in understanding TGF-β 
signaling quantitatively, we have developed a comprehensive, dynamic model of the canonical 
TGF-β pathway via Smad transcription factors (the major intracellular mediators of the signaling 
cascade), based on the most up-to-date information available in the literature.  We fit the model 
simultaneously to several sets of experimental data from the literature and validated the 
predictions of the finalized model independently against a different collection of experimental 
data. 

By describing how an extracellular signal of the TGF-β ligand is sensed by receptors and 
transmitted into the nucleus through intracellular Smad proteins, the model yields quantitative 
insight into how TGF-β-induced responses are modulated and regulated. Considering that Smad 
nuclear accumulation is necessary for transcriptional regulation, our model analysis reveals that 
mechanisms associated with Smad activation by ligand-activated receptor, nuclear complex 
formation among Smad proteins, and inactivation of ligand-activated Smad (e.g. degradation, 
dephosphorylation) may be critical for regulating TGF-β-targeted functional responses by 
affecting the intensity and duration of nuclear retention of Smad proteins. The model was also 
used to predict possible dynamic characteristics of the Smad-mediated pathway in abnormal cells, 
and to provide clues regarding possible mechanisms to explain the seemingly contradictory roles 
of TGF-β during cancer progression.  

Based on reported observations that TGF-β receptors are abnormal in a variety of human 
cancers, our model simulations of cancerous cell signaling indicate that a reduction in the levels 
of functional receptors may lead to altered TGF-β signaling behavior where tumor suppression 
characteristics are lost as a result of attenuated and transient Smad nuclear accumulation. 
Considering the differences in the dynamics of transcriptionally active, nuclear-localized Smad 
between normal and cancerous signaling systems, the TGF-β paradox may be explained partially 
by the following postulated hypotheses: (1) signaling thresholds of anti-oncogenic responses are 
different from those of pro-oncogenic responses; (2) cancer utilizes mechanisms associated with 
rapid degradation of major signaling components in the pathway; and (3) tumor-suppressing 
effects mediated by Smad4 and tumor-promoting effects mediated by potential binding factors of 
pSmad2 are unbalanced during cancer progression. 
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INTRODUCTION 
Transforming growth factor-β (TGF-β) proteins are members of a superfamily of secreted 

cytokines that control a diverse array of cellular processes including cell proliferation, 
differentiation, motility, adhesion, angiogenesis, apoptosis, and immune surveillance (1-3). The 
TGF-β signaling cascade begins when extracellular TGF-β binds to and brings together Type I 
and Type II TGF-β receptor serine/threonine kinases on the cell surface, whereby the Type II 
receptor phosphorylates and activates the Type I receptor. The activated Type I receptor, in turn, 
propagates the signal through phosphorylation of receptor-bound (R-)Smad transcription factors 
(Smad2/3 and Smad1/5/8) at the carboxy-terminal SXS motif. The activated R-Smads form 
hetero-oligomers with Smad4 as a common partner and rapidly translocate into the nucleus, 
undergoing continuous nucleocytoplasmic shuttling by interacting with the nuclear pore complex. 
Once in the nucleus, activated Smad complexes bind to specific promoters and ultimately 
regulate expression of target genes through interactions with other transcriptional co-activators 
and co-repressors, generating approximately five hundred gene responses in a cell- and context-
specific manner (1, 2, 4-6).   

The TGF-β signaling pathway has become an attractive but difficult target for oncology 
drug development because of its apparently paradoxical roles in tumorigenesis and metastasis. In 
normal and early phase tumorigenic epithelial cells, TGF-β functions as a potent tumor 
suppressor primarily by inducing cell cycle arrest and apoptosis. However, in the intermediate 
and late stages of carcinogenesis, tumor cells become resistant to the growth inhibitory effects of 
TGF-β and show elevated expression of TGF-β.  The ligand is over-expressed in clinical cancer 
samples, with increasing levels correlating with poor clinical outcomes. The role of TGF-β 
therefore appears to become one of tumor promotion, apparently supporting growth, subverting 
the immune system, and also facilitating, invasion, epithelial to mesenchymal transition (EMT), 
and angiogenesis. This finding has created the widely held perception that TGF-β acts as a tumor 
promoter in advanced tumorigenesis and metastasis (7-9) . While it is known that most cancer 
cell lines representing the entire spectrum of tumor progression have active TGF-β signaling 
pathways, detailed mechanisms of how a single stimulus, TGF-β, induces such a diverse array of 
responses during cancer progression remains poorly understood. This is primarily due to the 
complexity of the signaling cascade system in which a variety of signaling components changing 
dynamically over different time scales interact with one another. Quantitative understanding and 
analysis of such a complex regulatory circuit are not possible via qualitative human intuition 
alone; quantitative descriptions that lead to predictive models are necessary, and have become 
useful in improving our understanding of this complex signaling pathway.  

Although significant progress has been made in understanding the biochemistry of the 
TGF-β pathway, to the best of our knowledge, only five mathematical models of TGF- β 
signaling have been published, each focused on restricted portions, not the entire pathway (10-
12). Vilar and coworkers (10) explored a model of TGF-β signal processing at the receptor level. 
They modeled TGF-β receptor trafficking events taking place concurrently at the plasma 
membrane and in endosomes, and they incorporated the processes of internalization into 
endosomes, recycling to the plasma membrane, constitutive and ligand-induced receptor 
degradation, and receptor protein synthesis. In contrast, Clarke et al. (11) focused on intracellular 
signaling via the Smad-mediated pathway, incorporating into both the cytoplasm and the nucleus 
several steps such as R-Smad phosphorylation and dephosphorylation, nucleocytoplasmic 
shuttling of Smad proteins. However, this model does not show a direct relationship between an 
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extracellular TGF-β ligand and intracellular responses because signaling is initiated by the 
activated receptor complex, not by TGF-β ligand itself.  The dynamic behavior of the ligand-
stimulated receptor complex was described by a simple decreasing exponential function.  

The model presented by Melke and coworkers (12) for TGF-β signal transduction in 
endothelial cells included two Type I receptors (ALK1 for Smad1/5/8 and ALK5 for Smad2/3), 
simplified the ligand-receptor binding step by considering Type I receptors only, and 
incorporated an inhibitory protein, Smad7, to implement a simplistic feedback loop. A more 
recent contribution from Zi and Klipp (13) offered more detailed receptor trafficking than the 
Vilar model, and incorporated a simplified Smad-pathway and ligand-induced receptor inhibition. 
The latest model by Schmierer et al. (14) focused on Smad nucleocytoplasmic dynamics, 
providing a better description of the Smad pathway than the Clarke model; but the model still 
lacks a detailed description of the dynamic process of receptor trafficking and TGF-β-induced 
receptor activation.  

Thus, while these previous modeling efforts have provided adequate descriptions of 
various aspects of the TGF-β signaling pathway, none provides a sufficiently comprehensive 
and/or realistic description of the entire system, limiting their ability to facilitate understanding 
and analysis of the complex TGF-β system and to predict system behavior under aberrant 
conditions accurately. In particular, the oversimplification or omission of some important steps 
in the pathway employed in these models limits their suitability for use in attempting to unravel 
the mystery of the seemingly contradictory roles of TGF-β in cancer progression. Such 
applications require a more comprehensive and more realistic description of the signaling 
pathway.  

We present in this study, an integrated TGF-β pathway model in epithelial cells, by 
incorporating transduction of an extracellular signal (i.e. the ligand-binding and the receptor 
activation and trafficking), transmission of the signal (i.e. the canonical downstream Smad 
pathway), and by modifying and adding some important mechanisms (sequential receptor 
activation, protein synthesis, constitutive and ligand-induced degradation of signaling 
components, nuclear dephosphorylation of Smad, nuclear Smad complex formation, etc.), in 
accordance with the most up-to-date information available about the TGF-β signaling system. 
The result, as described below, is a system of ODEs from which, given as input the concentration 
of the extracellular TGF-β ligand, one obtains as the primary output of interest, the dynamic 
behavior of the activated Smad2-Smad4 complex in the nucleus, (which ultimately determines 
target gene expression and cellular responses) along with the dynamics of other intermediate 
signaling component proteins. Through simulation and model analysis, our integrated model 
provides insight into the signal-response relationship between the binding of TGF-β to its 
receptor at the cell surface and the activation of downstream effectors in the signaling cascade. In 
particular, we use the model to carry out “in-silico mutations” from which we generate several 
hypotheses regarding potential mechanisms for how TGF-β’s tumor-suppressive roles may 
appear to morph into tumor-promoting roles.  

 
 

MATERIALS AND METHODS 

Model Development 
The following is a description of the essential molecular processes on which the model is based. 
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The binding of ligand to signaling receptors 

The active form of dimeric TGF-β (assumed to be a single unit) binds to the ectodomain 
of dimeric Type II receptor (TβRII, designated as RII in the kinetic scheme) and forms a 
catalytically active TGF-β-RII complex (designated as TGFβ-RII). The activated TGFβ-RII 
complex subsequently interacts with Type I receptor (TβRI or ALK5, designated as RI), and 
activates it, forming a TGFβ-RII-RI complex (designated as RC) at the cell surface (1), which is 
ready for downstream signaling.  

 
Receptor internalization and recycling  

It has been reported that TGF-β receptors are continuously internalized via clathrin-
coated pits into early endosomes and are recycled to the plasma membrane for signaling, even in 
the absence of ligand (15, 16). Vilar et al. (10) have modeled the dynamic behavior of TGF-β 
receptors, considering receptor internalization and recycling. We adopt the approach of Vilar and 
coworkers, using first-order kinetics to describe receptor trafficking.  

 
Smad phosphorylation 

Although the receptors for TGF-β signal through both Smad2 and Smad3 proteins in 
epithelial cells, we select Smad2 to represent the R-Smads, because the two are virtually 
identical kinetically; furthermore, Smad2 is ~12-fold more abundant than Smad3 (11, 17). Based 
on previous studies showing that Smad activation for signaling requires internalization of the 
TGF-β receptor (15, 18, 19), we assume that Smad2 in the cytoplasm interacts first with the 
activated ligand-receptor complexes internalized into early endosomes, and then is 
phosphorylated.  

 
Smad heteromerization 

The stoichiometry of active R-Smad/Smad4 heteromeric complexes is still a controversial 
topic; the R-Smad/Smad4 complexes have been suggested to function as either dimers or trimers 
(20-25). For simplicity, we assume that phosphorylated Smad2 and Smad4 form a heterodimeric 
complex. In principle, receptor-activated R-Smads could associate with Smad4 in the cytoplasm 
first, followed by their entry into the nucleus as RSmad-Smad4 complexes; alternatively, these 
complexes could form after R-Smads translocate into the nucleus (26, 27). The latter implies 
nuclear import of monomeric phosphorylated R-Smads, which is discussed next. 

 
Nucleocytoplasmic shuttling 

In the basal state, both R-Smads and Smad4 are predominantly localized in the cytoplasm. 
However, upon ligand stimulation, both species rapidly accumulate in the nucleus (27, 28). It is 
becoming clear that these distributions are not static; rather both R-Smads and Smad4 shuttle 
continuously between the cytoplasm and nucleus regardless of TGF-β stimulation, ultimately 
reaching a dynamic equilibrium (17, 29-31). We therefore consider both import and export steps 
for monomeric R-Smad and Smad4 in our model. Although it is widely believed that activated 
R-Smads translocate into the nucleus in the heteromeric complex form with Smad4, it has been 
observed that complex formation of TGF-β-induced R-Smads with Smad4 is not always 
necessary for their accumulation in the nucleus (27, 32, 33). We therefore include nuclear import 
of receptor-phosphorylated R-Smad monomers in the cytoplasm in the model.  
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It has been suggested that the nuclear export signal (NES) of Smad4 may be masked 
through complex formation with activated R-Smads (2, 17, 27), resulting in nuclear 
accumulation of Smad4 after TGF-β stimulation. Also, a recent study proposed that only 
monomeric unphosphorylated Smad2 is capable of export so that the phosphorylated complex 
form of Smad2 is trapped in the nucleus (29). These observations provide the basis for our 
assumption that translocation of activated monomeric R-Smads and heteromeric RSmad-Smad4 
complex is unidirectional.  

Developing realistic mathematical descriptions of nucleocytoplasmic shuttling of Smads 
has been complicated by the complexity of, and uncertainty associated with, the import and 
export mechanisms that depend on the type of R-Smads. For example, regarding nuclear import, 
it has been proposed that Smad2, Smad3, and Smad4 enter the nucleus by direct interactions with 
the nuclear pore complex (34, 35). However, it also has been suggested that the nuclear import of 
Smad3 and Smad4 depends on the nuclear import factor, importin-β (36, 37). On the other hand, 
Smad4 export from the nucleus is mediated by CRM-1 (chromosomal region maintenance-1) 
nuclear export factor, whereas R-Smad export is independent of CRM-1 and simply may be 
mediated by direct interactions with nucleoporins (34, 35). In the absence of a consensus, we opt 
for a simple mechanism of nucleocytoplasmic shuttling, assuming first-order kinetics for both 
import and export steps.  

       
Dissociation and Dephosphorylation 

Suspecting the existence of unidentified R-Smad phosphatases, it has been proposed that 
R-Smads should undergo cycles of phosphorylation and dephosphorylation to shuttle between 
the cytoplasm and the nucleus in the presence of a TGF-β signal (17, 27, 29, 31). Lin et al. (38) 
recently confirmed this postulate about the existence of the phosphatases by identifying a Smad-
specific phosphatase, PPM1A, that directly dephosphorylates Smad2 and Smad3 to limit their 
activation. Thus, it is believed that dephosphorylation of Smad2 by the phosphatase leads to 
dissociation of R-Smad-Smad4 complexes to terminate the TGF-β signaling upon receptor 
deactivation, or to recycle R-Smads in the presence of a prolonged TGF-β signal, implying that 
dephosphorylation precedes dissociation. However, because a receptor-phosphorylated R-Smad 
monomer also may form a complex with Smad4 after R-Smads translocate into the nucleus as 
well as in the cytoplasm, we cannot rule out the possibility of activated Smad complex 
dissociating prior to dephosphorylation (39). We therefore include both steps in our model. It has 
been reported that PPM1A is primarily localized in the nucleus regardless of TGF-β stimulation 
(38), which supports the previous suggestions that R-Smad dephosphorylation seems to occur in 
the nucleus (26, 31). This leads us to take only nuclear dephosphorylation into account in our 
model. 

 
Protein degradation 

Each signaling component in the pathway is irreversibly eliminated via different 
mechanisms. First, degradation of receptors can occur via two different modes: ligand-dependent 
degradation targeted by Smad7-Smurf2 via the lipid-raft caveolar pathway, and ligand-
independent (or constitutive) degradation (10, 16). We assume that ligand-unbound Type I and 
Type II receptors, and ligand-induced receptor complexes at the surface are terminated in the 
pathway, as suggested by Vilar et al. (10). Secondly, it has been reported that receptor-activated 
Smad2 undergoes TGF-β-induced, ubiquitin-dependent degradation (40). It also has been 
suggested that proteasomal degradation of Smad2 is likely to occur in the nucleus, mediated by 
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the interaction of Smurf2 with phosphorylated Smad2 (41), whereas Smurf2 is known as a 
cytoplasmic protein (42). Thus, it remains unclear whether Smad2 is targeted to either nuclear or 
cytoplasmic proteasomes or both. In this study, we assume that monomeric receptor-
phosphorylated Smad2 is irreversibly removed by nuclear proteasomes, and un- and/or de-
phosphorylated single Smad2 is eliminated in the cytoplasm. Lastly, it has been reported that 
ubiquitination and proteasomal degradation of Smad4 is mediated by its direct interaction with 
Jab1, known as a coactivator of c-Jun and subunit of COP9 signalosome (43). We assume that 
Smad4 is eliminated in the cytoplasm. 

 
Protein synthesis 

Describing the production of proteins in a mathematical manner is quite complicated 
because of the uncertainty and complexity of the nuclear mechanisms for gene expression. 
Alternatively, many mathematical models of cell signaling which deal with proteins alone 
assume constant production of the signaling components (10, 12, 44)., Likewise we also assume 
that the 4 major signaling components (i.e. Type I and Type II receptors, Smad2, and Smad4) are 
produced under stationary conditions regardless of the presence of ligand.  

The components of the overall TGF-β signaling pathway as featured in our model are 
depicted in Figure 1. The resulting model is a system of 17 non-linear ordinary differential 
equations (ODEs) with 37 kinetic parameters arising from chemical reactions represented by 
mass action kinetics. The complete set of model equations, shown in Table 1, is integrated using 
the ODE15s routine of MATLAB 7.1 (The MathWorks, Inc.). 

Our model is based on three well-mixed compartments with the basic cellular 
characteristics defined for human keratinocyte HaCaT cells as follows: the extracellular 
(calculated as 1 mL/106 cells), the cytoplasmic, and the nuclear compartments. The cell is 
idealized as a sphere with a diameter of 15 μm, resulting in a cell volume of 1.5×10-12 L. Since, 
according to (29), an average cytoplasmic/nuclear volume ratio for HaCaT cells is approximately 
3, we  choose the values 1.13×10-12 L and 3.75×10-13 L, respectively, for the volumes of the 
cytoplasmic and nuclear compartments.   

 
Initial conditions 

We select the value 10,000 for the total number of TGF-β receptor molecules in the basal 
state. (This number is the median of the values presented in the literature (45)). Assuming that 
Type I and Type II receptors are evenly distributed, we choose the value 5,000 each for the 
initial number of Type I and Type II receptor molecules.  From recent observations that receptors 
are continuously internalized and recycled to the surface whether ligand is present or not, we 
assume that only 10% of total receptors are present in the plasma membrane at any one time and 
that the remaining 90% of total receptors are sequestered in endosomes (10, 15, 16).  We also 
select a total number of 100,000 each for Smad2 and Smad4 molecules (11). In the basal state, 
15% of total Smad2 and 13% of total Smad4 are assumed to reside in the nucleus (29). All other 
species are set to zero initially. 

 
Model parameter estimation 

To carry out simulations with the model requires specific values for the reaction kinetic 
parameters. Parameter estimation, the procedure for determining from a set of experimental data 
the values of unknown model parameters, continues to receive attention in systems biology. 
However, currently there is no consensus as to how to deal with such important related issues as 
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parameter identifiability, the possibility of multiple local minima, and high computational costs. 
The approach taken in this present work is summarized as follows: 

  
1. Initial Rough Estimation: Several kinetic parameter values were determined through an 
extensive literature search; some were computed using available in vitro experimental data; we 
also used physical constraints to determine others. For instance, the dissociation constant 
Kd=koff/kon is available for protein-protein binding reactions, whereas the separate on- and off-
rates, kon and koff, are not. Under these conditions,  we chose an initial estimate for kon by 
comparison with similar steps in other kinase pathways and computed the corresponding koff as 
koff=Kd×kon. The remaining unknown parameters were provided with initial estimates and 
reasonable upper and lower bounds by comparison with similar circumstances in the literature 
(e.g. similar steps in previous models or other signaling pathway models) and from known 
physical limitations (e.g. the diffusion-limited rates, 108-109 M-1s-1 (46)).     

 
2. Parametric Sensitivity Analysis: To identify which parameters are the most important and 
which must therefore be estimated most precisely, using the set of initial estimates determined in 
Step 1 above, we performed local parameter sensitivity analysis to determine the effect of 
parametric changes on the set of five system responses of interest for which experimental 
measurements are available (i.e. total Smad2 in the nucleus and the cytoplasm (27), total 
phosphorylated Smad2 in the nucleus and the cytoplasm (17, 27), and total Smad4 in the nucleus 
(27)). The computations are based on the following expression for the normalized sensitivity 
coefficient (NSC):  
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where y and p respectively denote the system response variables and kinetic parameters. A total 
of 13 parameters were selected to be estimated more precisely because of their high sensitivity 
coefficients and/or because we had little or no confidence in their initial values. 

 
3. Least Squares Fitting to Data: We fit our model predictions simultaneously to corresponding 
in vitro experimental data from the literature, via local minimization of the sum of squared 
residual errors: 
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where yi(t,p) and yi(t) denote, respectively, model predictions for a given trial of parameter 
values, p, and the corresponding experimental measurements, for each measured variable, i. The 
experimental data used for the curve-fitting are time courses of (i) total Smad2 in the nucleus 
(27), (ii) total Smad2 in the cytoplasm (27), (ii) total phosphorylated Smad2 in the nucleus (17), 
(iv) total phosphorylated Smad2 in the cytoplasm (27), and (v) total Smad4 in the nucleus (27). 
We quantified the immunoblot literature data with the Image Processing Toolbox in MATLAB 
7.1, and normalized both the experimental data and the corresponding model estimates to the 
largest intensity point of each data set. The optimum parameter values (constrained to lie within 
the specified upper and lower bounds) were determined using the nonlinear least square 
‘lsqnonlin’ routine of MATLAB 7.1. 
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4. Identifiability: We performed a “practical identifiability” analysis to determine whether the 
unknown parameters of the postulated model can be uniquely estimated from the available data, 
following Birtwistle et al. (47). Briefly, approximate local confidence intervals for the parameter 
set are given by, 

1
2/ )( −−

−
= ii

T

pt

NN
i NN

StCI pt ZZα   

where Nt and Np respectively denote the number of experimental data time points and the number 
of parameters to be estimated; is the Student’s t-distribution statistic evaluated with Nt -Np 
degrees of freedom, at confidence level 100(1- α)%, (with α as the “tail area probability” 
typically set at 0.05 to yield a 95% confidence level); S is the sum of squared errors, and Z is the 
model sensitivity matrix evaluated at the current parameter values. The ith parameter is said to be 
practically locally identifiable only if the magnitude of its approximate confidence interval is 
less than a specified tolerance i.e.

pt NNt −
2/α

iiCI ε<|| . We chose tolerances such that the approximate 
confidence intervals on identifiable parameters were generously set at ± ~40%. 
 
5. Identifiable Parameter Estimate Refinement: Estimated values for identifiable parameters 
were further refined by repeating Step 4 (local identifiability test) followed by Step 3 (local least 
squares estimation). After obtaining the “best” estimates of this subset of parameters, we carried 
out a final least squares estimation of the entire parameter set. 

The results of this procedure (final estimates as well as the identifiability status of each 
parameter) are listed in Table 2.   

 
 

RESULTS AND DISCUSSION 

Model Development and Validation 
Model fit to literature data 

A comparison of the model fit to the five sets of in vitro experimental data used for 
parameter estimation is shown in Figures 2A-E.  First, Fig 2A shows the model fit to data on 
total nuclear pSmad2 reported by Inman et al. (17) in response to a step input of 2ng/ml of TGF-
β.  Note the good agreement between the model prediction and the data.  Furthermore, this 
dynamic profile also agrees well with other reported experimental results that show the level of 
nuclear pSmad2 peaking approximately 45-60 min after TGF-β treatment and declining 
thereafter, but not to zero, even after 6-8 hours (27, 48). The model fit to total cytoplasmic 
pSmad2 data under conditions where protein synthesis is strongly inhibited in the cells, as 
reported in Pierreux et al. (27), is shown in Fig. 2B. The model shows that the level of 
cytoplasmic pSmad2 drops sharply after peaking rapidly, and remains very low thereafter. 
Considering that receptor-activated Smad2 resides either in the cytoplasmic or in the nuclear 
compartment, it appears as if more of pSmad2 accumulates in the nucleus during active signaling 
of TGF-β (17, 29-31) than elsewhere.  

Next, Figs 2C and 2D show the model fit to experimental profiles of total Smad2 in the 
nucleus and the cytoplasm, respectively, under the conditions where cells were treated 
continuously with 2ng/mL of TGF-β and 20 μg of protein synthesis inhibitor, cycloheximide 
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(27). Note how the dynamic pattern of the nuclear Smad2 response appears to be the opposite of 
the cytoplasmic response. In other words, while the level of nuclear Smad2 reaches a peak and 
decreases thereafter, the amount of cytoplasmic Smad2 drops correspondingly and then increases. 
These opposite dynamics may be caused by the shuttling of Smad2 between the cytoplasm and 
the nucleus via a mechanism that involves the steps of nuclear import and export of Smads; 
association between nuclear pSmad2 and Smad4; dissociation of the complex; and 
dephosphorylation of the activated Smad2, and (re)phosphorylation of Smad2 by active receptors.  

Finally, Figure 2E shows the model fit to experimental data from Pierreux et al. (27) for 
total nuclear Smad4 in response to a step of 2ng/mL of TGF-β. Although Smad4 shuttles 
continuously between the cytoplasm and the nucleus in the absence of ligand, TGF-β stimulation 
allows Smad4 to reside more in the nucleus than in the cytoplasm through complex formation 
with pSmad2. However, nuclear events such as dephosphorylation of pSmad and dissociation of 
Smad complex allow nuclear Smad4 to return to the cytoplasm. Thus, nuclear Smad4 reaches 
peak activity at approximately 0.5-2 hr after ligand addition and declines thereafter (27). 

Keeping in mind that the model was fit to these five data sets simultaneously, the 
resulting agreement between model prediction and data is quite good overall. The inevitable 
discrepancies between model prediction and experimental data are attributable to the following 
factors. First, the data sets are from different laboratories and were therefore acquired under non-
identical conditions (e.g. cell culture conditions, cell population, etc). Thus, model parameters 
that may be appropriate for one set of experimental data may not be entirely appropriate for 
another.  The optimum model parameters will therefore result from compromises whereby an 
otherwise “better” fit to a single data set is traded off for a reasonable fit to the complete 
collection. Next, values for kinetic parameters (e.g. dissociation constants, Michaelis constants, 
etc) determined from in vitro measurements reported in the literature and used in the model may 
not exactly correspond to values that obtain under in vivo experimental conditions. Finally, to a 
lesser extent, the model non-linearity and constraints raise the distinct possibility that the 
resulting optimum parameter set may have been found in a local minimum. While it is possible 
to address this problem by using such global optimization methods as Genetic Algorithm and 
Simulated Annealing, it is not clear that the additional and quite significant computational cost is 
justifiable in this case. Taking all of these considerations into account, the model does a 
reasonable job of capturing the dynamic behavior of TGF-β signaling as reported in the 
experimental literature. 

 
Model Validation 

Because the data sets shown in Figs 2A-E were used to determine unknown model 
parameters by minimizing the sum of squared differences between model prediction and data, it 
is important, before proceeding to use the model, to validate its prediction against a different set 
of independent experimental data, without adjusting any model parameters.  To validate our 
model in this manner, we compared its predictions to four independent experimental data sets 
obtained from the literature: (i) total phosphorylated Smad2 in the cell (40), (ii) ratio of  cellular 
pSmad2 to total Smad2 in response a step input in the ligand concentration, (iii) same as in (ii) 
except in response to a rectangular pulse input (38), and  (iv) total Smad4 in the cytoplasm (27).  

Figure 3A shows the predicted dynamics of total cellular (cytoplasmic + nuclear) Smad2 
phosphorylation in response to a step input of 200 pM of TGF-β, compared to the corresponding 
experimental observations reported in Lo and Massague (40). The model prediction, especially 
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the early response, shows remarkably good agreement with the data, even though its deviation 
from data becomes somewhat more pronounced with time after the peak. 
 A model prediction of the ratio of pSmad level to total Smad  in response to a step input 
of 2ng/ml of TGF-β is shown in Figure 3B compared to the experimental data of Lin et al. (38). 
Again, the agreement between model prediction and data is very good, with the prediction falling 
within the experimental error bars. How the ratio of pSmad2 level to total Smad2 responds to a 
short rectangular pulse of 2 ng/ml of TGF-β followed by TβRI kinase inhibitor SB431542 to 
block further phosphorylation (38) is shown in Figure 3C, where the model prediction is seen to 
match the data almost perfectly. 

Finally, for cells induced by a step input of 2ng/ml of TGF-β and treated by 20 μg of 
protein synthesis inhibitor, cycloheximide (27), Figure 3D shows the agreement between the 
model prediction of cytoplasmic Smad4 response and the experimental data.  

Overall, given that these are results of direct model predictions of four separate and 
independent experimental data sets, with no model parameter adjustments, we conclude that the 
model represents the dynamic behavior of the TGF-β signaling pathway quite well.  

 

Model Analysis and Simulation 
In this section, we present results of computational “experiments” used to explore the 

dynamic behavior of the now-validated TGF-β signaling model. From among several signaling 
components in the pathway, we select phosphorylated Smad complex in the nucleus and to 
represent the signaling activity of the TGF-β pathway, since the expression of TGF-β-inducible 
genes is regulated by nuclear activated Smads. The premise is that such computational 
investigations into the dynamics of the TGF-β-induced Smad complex in the nucleus, under 
various conditions, will facilitate understanding and characterization of the TGF-β/Smad 
pathway; it also will provide clues regarding the role(s) of this pathway in tumor progression and 
metastasis. All simulations were performed with the parameter values in Table 2, and step inputs 
of 80 pM of TGF-β, unless otherwise specified. 

 
Model parameter sensitivity analysis 

While parameter sensitivity analysis has been shown to play an important role in 
parameter estimation, it also can be employed to obtain insight into the model behavior itself. 
Specifically, sensitivity analysis carried out for the primary output of interest, nuclear pSmad2-
Smad4 complex, will help us understand quantitatively which aspects of the pathway most affect 
the system behavior.  

Figure 4 shows normalized sensitivity coefficients as a function of time for the 10 most 
important parameters (parameters for which the maximum normalized sensitivity coefficient 
exceeds 0.5 in absolute value at any point in time). The most important features of this plot are 
summarized as follows: (1) Immediately after ligand stimulation, the output variable is strongly 
affected by four of this set of most sensitive parameters: in order of importance, these are k4a 
(binding of Smad2 to active receptors), k3int (internalization of receptor complexes), k7imp 
(nuclear import of pSmad2-Smad4), and k2a (complex formation of activated TβRII and TβRI). 
(2) On the other hand, in the mid- to longer time interval following ligand stimulation, the 
following parameters become more important: in order of importance, these are k18a (association 
of nuclear pSmad2 and Smad4), and k18d (dissociation of nuclear pSmad2-Smad4), k11exp 
(nuclear export of Smad4), k20lid (ligand-induced degradation of pSmad2), k11imp (nuclear import 
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of Smad4), k23rec (recycling of internalized receptor complexes), k3int (internalization of receptor 
complexes), and k4a (binding of Smad2 to active receptors).  

These results have biologically important consequences. First, the high sensitivity 
coefficients of the receptor-related parameters (i.e. k2a, k3int, k4a, and k23rec) reveal that the system 
responses to TGF-β are highly dependent on the active state of the receptors. In particular, Figure 
4 shows that 45-60 min after TGF-β treatment, by which time nuclear pSmad2-Smad4 would 
have reached its peak activity (Figure 2A), the importance of the state of ligand-activated 
receptors on the species again increases. Considering that nuclear pSmad2-Smad4 complex loses 
its activity by dephosphorylation and is destroyed by proteasomal degradation, this result implies 
that to maintain accumulation of activated Smad complex in the nucleus, R-Smad must be 
continuously phosphorylated by active receptors. Taking into account that after ligand 
stimulation, free Smads in the cytoplasm are either still unphosphorylated or have been exported 
from the nucleus after undergoing dephosphorylation, this result reveals that the mechanism 
involving rephosphorylation of Smad plays a vital role in the nuclear accumulation of pSmad2-
Smad4, especially at post-peak times. To recycle Smad2 for rephosphorylation during active 
signaling, nuclear pSmad2 (either monomeric or heteromeric) must undergo dephosphorylation 
by phosphatases because only monomeric unphosphorylated Smad2 is capable of export from the 
nucleus to the cytoplasm so that the phosphorylated complexed form of Smad2 is trapped in the 
nucleus (29). Although the sensitivity analysis shows that nuclear pSmad2 complex is less 
sensitive to changes in the dephosphorylation step, this step is indispensable to the recycling of 
Smad2. To conclude, the parametric sensitivity analysis shows that the mechanisms for Smad2 
recycling (i.e. phosphorylation-dephosphorylation-rephosphorylation) have a critical effect on 
the transcriptional activity of the signaling pathway. 

The increasing nature of the sensitivity coefficients of k18a and k18d over time shows that 
both the formation of pSmad2-Smad4 complex in the nucleus and its dissolution are crucial for 
nuclear retention of these complexes. Our model has two sources of monomeric pSmad2 in the 
nucleus. One source is the dissociation of pSmad2-Smad4 complexes that are formed in the 
cytoplasm and then translocated to the nucleus; the other is nuclear entry of monomeric Smad2 
that was phosphorylated in the cytoplasm. The former requires effective nuclear translocation of 
pSmad2-Smad4 complexes, as confirmed by the high sensitivity coefficient of the parameter 
k7imp. Unlike other parameters, however, the effect of the nuclear import of activated Smad 
complexes is not significant over longer periods. On the other hand, considering that the 
importance of k18a and k18d increases over time (see Figure 4), it is likely that the latter source, 
the nuclear import of cytoplasmic monomeric pSmad2, also plays a vital role in the nuclear 
retention of pSmad2-Smad4 complexes. To confirm this, we computationally “blocked” the 
nuclear import of pSmad2-Smad4 complexes while allowing import of pSmad2 monomer, and 
then prevented nuclear import of pSmad2 monomer while allowing import of the complexed 
pSmad in order to study the effects of these “blockades” on the nuclear accumulation of active 
Smad complexes. Figure 5 shows that the effect of blocking the nuclear import of cytoplasmic 
pSmad2-Smad4 complexes (i.e. the effect of nuclear complex formation between pSmad2 and 
Smad4) on nuclear retention of active Smad complexes is not trivial compared to the effect of 
preventing the nuclear entry of monomeric pSmad2. Taking the importance of Smad4 for nuclear 
complex formation into account, it is not surprising that the significance of nucleocytoplasmic 
shuttling of Smad4 (k11imp and k11exp) increases at longer times. Many biological “models” of the 
pathway mechanisms have neglected the nuclear entry of monomeric pSmads and the nuclear 
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complex formation between Smad2 and Smad4, but this result argues strongly for their 
incorporation. 

 
The effect of Smad phosphorylation 

As seen in previous sections, the nuclear accumulation of Smad2-Smad4 complexes is 
significantly affected by the dynamics of activated receptor complexes. To examine how 
variations in the active state of receptors influence the nuclear retention of pSmad2 complexes, 
we varied the rate of the binding between ligand-activated receptor complexes and Smad2 in the 
cytoplasm (k4a) 10-fold, because the dynamics of the activated receptor complexes are ultimately 
reflected in the phosphorylation of Smad2 for downstream signaling. Because it has been 
reported that Smad7, one of the inhibitory Smads, can bind to activated receptors in competition 
with R-Smads (26, 49, 50), this simulation may also provide insight into the inhibitory effect of 
Smad7 on TGF-β signaling. Figure 6A shows that when complex formation between ligand-
activated receptors and Smad2 occurs more rapidly, more pSmad2 complexes are accumulated in 
the nucleus for a longer period, and the time to achieve peak accumulation of nuclear pSmad2 is 
shortened somewhat. Conversely, the slower binding of Smad2 to the receptors induces lower 
and slower accumulation of pSmad2 in the nucleus. These results suggest that regulation of the 
active state of the ligand-activated receptors and their complex formation with R-Smads may 
significantly affect the system responses to TGF-β through the nuclear retention of pSmad2 
complexes in terms of the intensity and the duration of transcriptional activity. 

 
The effect of nuclear Smad complex formation 

We also investigated how Smad complex formation in the nucleus affects nuclear 
accumulation of activated Smad complexes, by varying the rate of association between nuclear 
pSmad2 and Smad4 (k18a) 10-fold (Figure 6B). The results show that while rapid formation of 
the complex between nuclear pSmad2 and Smad4 induces prolonged and enhanced nuclear 
accumulation of pSmad2-Smad4 complex, slow binding of pSmad2 and Smad4 leads to 
shortened and attenuated retention of pSmad2 complex in the nucleus. Thus, these results imply 
that the nuclear complex formation step plays an important role in regulating the intensity and 
duration of TGF-β-targeted transcriptional activities through pSmad2 complexes. More 
importantly, the results imply that pSmad2 complex-mediated response to TGF-β stimulation 
may be significantly attenuated by competitive inhibition or by interference from other nuclear 
molecules that also have high affinity for either pSmad2 or Smad4. This inhibitory action 
ultimately gives rise to a significant reduction in the rate of association between these proteins. 
This conclusion is supported by a recent finding that a ubiquitous nuclear protein, transcriptional 
intermediary factor 1γ (TIF1γ), selectively binds receptor-phosphorylated Smad2/3 in 
competition with Smad4 (51, 52). There is also the possibility that other molecules not yet 
identified may bind to either pSmad2 or Smad4 with high affinity; these putative molecules then 
would hamper complex formation between pSmad2 and Smad4. Taken together, these results 
reveal that the step of complex formation between pSmad2 and Smad4 is closely associated with 
modulation of TGF-β-induced signal patterns. 

 
The effect of signal turn-off 

Inactivation of ligand-activated R-Smads is crucial for controlling the extent of TGF-β 
effects. In our model, irreversible inactivation and termination of the pSmad2-mediated signals 
can be achieved in one of two ways: (i) via ligand-induced ubiquitination and subsequent 
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degradation by proteasomes, or (ii) via dephosphorylation by inorganic phosphatases. We 
examined the effect of ligand-induced degradation of nuclear pSmad2 on the nuclear retention of 
pSmad2 complexes by changing the rate constant (k20lid) 10-fold. Figure 6C shows that slower 
degradation of pSmad2 results in higher and more sustained activity of nuclear pSmad2 
complexes. On the other hand, when the rate of degradation is increased, the activity of pSmad2 
complexes in the nucleus decreases more rapidly immediately after attaining its peak value, 
dropping almost to zero in the long term, hence resulting in transient dynamics. Taken together 
with the previous sensitivity analysis results, these simulations reveal that ligand-induced multi-
ubiquitination via Smurf2 protein and subsequent degradation of activated Smad2 by 
proteasomes can play a vital role in regulating TGF-β-dependent transcription.  

Similar system responses were obtained when the rates of pSmad2 dephosphorylation 
(k8dp and k19dp) were changed 10-fold (Figure 6D). When pSmad2 dephosphorylation occurred 
faster, the peak activity of nuclear pSmad2 complexes was noticeably reduced and the activity 
reached steady state more rapidly. However, the results show that variations in the 
dephosphorylation rates also changed the intensity of the response, but did not significantly 
affect the signal duration. This is because dephosphorylation by phosphatases can affect only the 
activity of nuclear Smads, and not the irreversible termination of the component itself. In other 
words, even though nuclear pSmads lose their activity by dephosphorylation, they can be 
rephosphorylated after exiting the nucleus, as long as the receptor activated signaling pathways 
remain active. These results therefore indicate that ligand-induced ubiquitination and subsequent 
proteasomal degradation can play an important role in regulating both the duration and intensity 
of Smad-mediated signal responses to TGF-β, whereas dephosphorylation may have a significant 
effect only on the signal intensity. 

 
The effect of inhibiting nuclear import of active Smads 

It has been reported that Smad activity can be regulated by diverse extracellular signal 
inputs through corresponding kinase pathways (3, 6). One of the interactions between Smad and 
other pathways is achieved by direct phosphorylation of the linker region connecting the MH1 
and MH2 domains of Smad proteins. This region is phosphorylated by endogenous mitogen-
activated protein kinase (MAPK), Ca2+-calmodulin-dependent protein kinase II (CamKII), and 
cyclin-dependent kinases (CDKs). These inputs attenuate the nuclear accumulation and 
transcriptional activity of Smads, and negatively impact TGF-β signaling function. Although our 
model is limited in its ability to investigate all possible effects of crosstalk between TGF-β and 
other signaling pathways, still we are able to examine the effect of such input signals on the 
nuclear accumulation of Smads by directly varying the rate of nuclear import of TGF-β-activated 
Smads. Figure 6E shows that a large (10-fold) increase in the rates of nuclear translocation of 
both monomeric and complexed pSmad2 (k7imp and k17imp) does not have a pronounced effect on 
the nuclear retention of Smads. A 10-fold decrease in the rates resulted in a reduced response, 
but its effect is relatively insignificant, compared with the effects of variations in the parameter 
values of other important steps in the pathway. The immediate implication is that nuclear 
retention of Smads is relatively insensitive to crosstalk between Smad and other kinase pathways 
through phosphorylation of the Smad linker and consecutive inhibition of their entry to the 
nucleus.    
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TGF-β-dose-dependent responses 
We examined the effect of various TGF-β concentrations on the dynamics of the 

signaling system. Step inputs of four different concentrations of TGF-β (0.02, 0.2, 2, and 20 pM) 
were used to investigate the dose effects. All other conditions, including the initial conditions 
and kinetic parameters, remained the same. Figure 7A shows that as the TGF-β concentration 
increases, the activity of receptor complexes also increases and the peak activity time increases 
somewhat. Increases in TGF-β concentration also enhanced activity of receptor-activated Smad 
complexes and induced faster kinetics for active Smad complexes by allowing Smads to reach 
peak activity somewhat more rapidly (Figure 7B). For instance, while 0.02 pM of TGF-β 
induced maximum activity of Smads in 93 min, 20 pM of TGF-β resulted in peak activity of 
Smad in 54 min. Considering that activated Smad complexes in the nucleus regulate expression 
of TGF-β-target genes, these results reveal that an increase in the concentration of TGF-β may 
accelerate and enhance Smad-mediated cellular responses.  
 It is important to note that as the TGF-β concentration increases, the observed differences 
in the signaling activity diminish. For example, the response to a 2 pM stimulus is not 
significantly different from that for a 20 pM stimulus.  This observation is true for both receptors 
and Smads. These results reveal that there is a saturation concentration of TGF-β above which 
Smad-mediated signaling responses within a cell no longer change. In other words, no matter 
how many bioactive TGF-β molecules are available in the extracellular space, each cell has a 
receptor-limited capacity to respond to them and consequently induce the corresponding signal 
responses.  
 
In-silico mutations 

How can cancer cells become resistant to the tumor-suppressor effects of TGF-β, but, at 
the same time, remain responsive to the tumor-promoter effects?  We believe that differences 
between normal and cancerous signaling responses could offer some clues.  

It is known that some signaling effectors of the TGF-β pathway are abnormally altered in 
many human tumors (53). Specifically, aberrant alterations such as mutations, deletions, and 
downregulation of Type I and/or Type II receptors are most frequently observed in a variety of 
human cancers including prostate, breast, ovarian, bladder, gastric, and pancreatic cancer. We 
have therefore investigated the effect on the TGF-β signaling system of some of these common 
abnormal alterations in receptors, using a 10-fold reduction in the initial levels and production 
rate of both Type I and Type II to represent cancerous conditions. 

First, Figures 7C and 7D show the TGF-β dose-dependent responses for cancerous cells, 
corresponding to what was shown earlier in Figs 7A and 7B for normal cells. While a 
comparison of Figs 7A and 7C reveals only slight differences in the relative activity of receptor 
complexes for normal and cancerous cells, the situation is different with the nuclear Smad-
mediated activity.  A careful comparison of Figs 7B and 7D indicates that the amount of TGF-β 
needed to produce saturated Smad-mediated response in cancer cells is far higher than that in 
healthy cells. Specifically, the response in Figure 7B for normal cells is essentially saturated with 
0.2 pM of TGF-β (with higher doses producing essentially the same response); Fig 7D on the 
other hand shows that at least 2 pM of TGF-β is required before the Smad-mediated response 
begins to approach saturation. This is, of course, a direct effect of the reduction in the number of 
functional receptors in cancer cells (53) which renders the them less responsive to TGF-β 
stimulation.  But this finding also indicates an important characteristic of cancerous cells: to 
elicit nuclear Smad-mediated activity generally requires more TGF-β than normal.  
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Next, a head-to-head comparison of normal versus cancerous cell responses reveals some 
very interesting features.  Figure 8A shows that when the level of functional receptors is very 
low, the activity of ligand-activated receptor complexes (in response to a step of 2 ng/mL, or 80 
pM TGF-β) is significantly attenuated compared to that in the normal system. Specifically, the 
peak level of active receptors in the cancerous system plunges by an astounding 92%. Thus, even 
though the dose-response characteristics of active receptors are essentially similar for both 
classes of cells, the actual peak level attained is significantly lower for cancer cells. Once again, 
this is consistent with what one would expect from cells having fewer functional receptors (53). 

Not surprisingly, due to the correlation between active receptors and nuclear pSmads, 
Figure 8B shows that the sharp drop in the level of functional receptors in cancer cells leads to a 
marked decrease in the activity of nuclear pSmad complexes. Compared to the normal cell 
response, the peak activity of nuclear pSmad complexes in cancer cells was reduced by 65%, 
with the steady-state activity also remaining comparatively low.  
 Interestingly, a reduction in the level of receptors also slowed nuclear pSmad responses. 
While nuclear pSmads in the normal system reached maximum activity in 55 min, their activity 
under a cancerous condition peaked at 86 min.  

These results are consistent with our own experimental observations of Smad2 
phosphorylation in some prostate cancer cell lines (i.e. LNCaP and C4-2) as shown in Fig 8C. (A 
separate assay, not shown, confirmed that both LNCaP and C4-2 cells have low levels of TGF-β 
Type I and Type II receptor proteins.) While peak activity of phosphorylated R-Smads is attained 
approximately 1 hr after ligand addition  in cells with intact TGF-β signaling machinery (40), the 
metastatic prostate cancer cells with reduced functional  receptors showed peak activity much 
later, as a result of the slower dynamics of activated Smad2 (Figure 8C). Although the kinetics of 
pSmad2 in the cancer cells could potentially be affected by many factors (e.g. cancer types, cell 
lines, cell contexts, etc.), our simulation and experimental results reveal that reduction in the 
receptor levels, a notable phenotypic difference between normal and cancer cells, is closely 
associated with differences in the dynamic behavior of the pathway.  

Taken together, these results indicate generally that a reduction in the level of functional 
TGF-β receptors in cancer cells may lead to attenuated and slower TGF-β-stimulated signaling 
responses via Smad2. The specific implications of the model predictions in Figures 7 and 8 
reveal some potentially important findings about TGF-β and cancer cells: (i) cancer cells require 
higher than normal levels of TGF-β in order to elicit significantly attenuated (and much slower) 
nuclear Smad-mediated activity; (ii) but even the increased levels of TGF-β will never be able to 
produce Smad-mediated responses that will be anywhere close to normal because of the 
saturation effect shown in Fig 7D.  These characteristics may have significant implications for 
cancer therapies that are based on targeting TGF-β.   

 
Hypotheses on the dual role of TGF-β 

As seen above, the dynamic patterns of major signaling components in cancer cells in 
response to TGF-β may be quite different from those in normal cells. Such differences may 
provide clues regarding the role of TGF-β — tumor suppressor or tumor enhancer — during 
cancer progression. Here, we postulate three testable non-mutually exclusive hypotheses arising 
from our foregoing analysis of the system dynamics. 
 
Hypothesis (1): Different thresholds for gene expression 
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As shown above via simulation, cancer cells have attenuated TGF-β-stimulated Smad 
pathway responses. Such cells have been confirmed experimentally to be resistant to the 
antiproliferative effect of TGF-β, while showing typical pro-oncogenic responses. Such behavior 
may be explained in part by the following “threshold hypothesis”: in response to TGF-β, growth-
inhibitory genes require higher threshold levels of nuclear Smad activity for their expression than 
genes associated with pro-oncogenic and pro-metastatic effects. In other words, under normal 
conditions, or in the early stage of cancer progression, the antiproliferative responses to TGF-β 
are predominant over pro-oncogenic responses. This is because the transcriptional activity of 
nuclear pSmad is high enough to induce anti-growth gene expression. However, as cancer 
progresses, this transcriptional activity may decline significantly and thereby hardly exceed the 
threshold necessary for the expression of growth-inhibition genes. Meanwhile, genes related to 
tumor-promoting effects may be relatively insensitive to the attenuation of the transcriptional 
activity by Smads, so that the expression of such genes remains approximately unchanged even 
under cancerous conditions. As a consequence, the dominance of tumor suppressor genes over 
the tumor-promoter genes may be blunted in cancer cells. This hypothesis is supported in part by 
previous experimental observations that cells with reduced TGF-β receptor function showed 
resistance to the antiproliferative effect of TGF-β, whereas other TGF-β responses were not 
significantly affected (48, 56-58). We believe that further investigation into differences in the 
temporal profiles of gene expression and thresholds of anti-growth and pro-oncogenic genes 
induced by TGF-β will provide some clues regarding the putative dual effects of TGF-β.  

 
Hypothesis (2): Fast degradation of signaling components   

It has been suggested that the duration of TGF-β/Smad signaling is a critical determinant 
for regulating specificity of cellular responses (59). For example, Nicolas and Hill (48) reported 
that normal epithelial cells (HaCaT and Colo-357) with sustained retention of active Smad in the 
nucleus (more than 6 hr after TGF-β addition) are sensitive to growth inhibition by TGF-β. In 
contrast, pancreatic cancer cells (PT45 and Panc-1) showing transient nuclear retention of active 
Smads (1-2 hr after TGF-β treatment) preferentially evade the growth-inhibitory effects of TGF-
β, with no changes to other responses. Thus, it seems likely that the expression profile of TGF-β-
inducible genes required for cell cycle arrest may differ depending on the dynamic patterns of 
nuclear pSmads. Taking into account that such pancreatic cancer cell lines contain low levels of 
TGF-β Type I receptor protein (48), one may be tempted to conclude that the reduction in 
receptor levels is responsible for driving the transient accumulation of pSmads in the nucleus to 
induce alteration in the expression profiles of the anti-growth genes.  However, reduced levels of 
receptors may not be the only factor leading to the experimentally observed short-term signal 
response to TGF-β. We hypothesize that such transient dynamic behavior of nuclear pSmads 
results from not only a reduction in receptor levels but also from other mechanisms, especially 
mechanisms associated with rapid degradation of major signaling components in the pathway. 
We have already seen responses become transient when the rate of pSmad2 degradation 
increased (Figure 6C). Alterations in the mechanism(s) involved in degradation of pSmad2 
during cancer progression may therefore account for producing transient signal responses to 
TGF- β.  

It also is possible that Smad4 may be a major target for rapid degradation. Western blot 
analysis (48)  showed that whereas the activity of Smad4 is sustained in normal cells during 
active signaling, Smad4 from nuclear extracts of pancreatic cancer cells shows fairly transient 
dynamics. We suspect that the transient dynamics of Smad4 in cancer cells result from an 
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expedited degradation process for Smad4 (Figure 9A). To confirm that such a rapid degradation 
of these two major signaling components, pSmad2 and Smad4, contributes to the transient 
dynamics of nuclear pSmad2 under cancerous conditions, we carried out simulations with 10-
fold increases in the rate constants for either pSmad2 or Smad4 or both under cancerous 
conditions where the level of receptors is reduced 10-fold. Figure 9B shows that the increased 
degradation rate of pSmad2 and/or of Smad4, along with decreased expression of receptors, 
leads to more attenuated and transient dynamics of activated Smads, compared to the response to 
a decrease in the level of the receptors alone. This hypothesis is corroborated by previous 
findings that in response to TGF-β, tumor cells show increased production of proteases and 
downregulation of the protease inhibitors, leading to rapid degradation of signaling components; 
these features are not observed in normal cells (60). Further investigations into changes in the 
degradation mechanisms of the signaling components in the pathway during cancer progression 
may therefore be important in understanding the apparently contradictory roles of TGF-β. 

 
Hypothesis (3): Competitive inhibition by nuclear binding partner of pSmad 

The last hypothesis is related to mechanisms that influence the rate of pSmad2-Smad4 
complex formation and/or dissociation, which also affect the duration of TGF-β/Smad signaling. 
Our sensitivity analysis has shown that association and dissociation between pSmad2 and Smad4 
in the nucleus critically affect nuclear accumulation of pSmad2-Smad4 complexes in terms of 
signal intensity and duration. In particular, Figure 6B shows that retardation of nuclear complex 
formation of pSmad2 with Smad4 leads to attenuated and transient signal responses. We 
hypothesize that one possible factor in the sluggishness of pSmad2-Smad4 complex formation is 
competitive inhibition by other binding partners of ligand-activated Smad in the nucleus, apart 
from Smad4. This is supported by a recent finding that a ubiquitous nuclear protein, TIF1γ, can 
selectively bind to ligand-activated Smad2/3, competing with Smad4 (51), a schematic diagram 
of which is shown in Figure 10. This study suggests the possible existence of hitherto 
unidentified binding partners that show high affinity for receptor-phosphorylated Smad2.  
Such binding partners may not only inhibit complex formation between pSmad2 and Smad4, but 
may also mediate cellular responses different from those mediated by Smad4. The same study 
(51) showed that in human hematopoietic progenitor cells, the binding of receptor-
phosphorylated Smad2/3 to Smad4 mediates inhibition of proliferation, whereas complex 
formation of pSmad2/3 with TIF1γ mediates differentiation in response to TGF-β. This result 
strongly suggests the possibility that the Smad pathway can mediate a variety of cellular 
responses through its branch pathways, depending on nuclear binding partners of TGF-β-induced 
R-Smads. In particular, if such putative binding partners can mediate cellular responses 
contradictory to those mediated by Smad4, this may explain the dual role of TGF-β during 
cancer progression. Suppose that during cancer progression the rate of complex formation 
between R-Smads and Smad4 slows because of either lower affinity between those molecules or 
because of higher affinity between R-Smads and other binding proteins, due to conformational 
changes by mutations or for other reasons. Suppose as well that such binding proteins strongly 
mediate tumor-promoting responses such as EMT, invasion, and survival. A decreased rate of 
complex formation between pSmads and Smad4 in the nucleus can lead to an increased number 
of free nuclear pSmads that can bind to other nuclear partners; this makes for a higher probability 
of complex formation between pSmads and other partners. Considering that slow association of 
pSmad2 with Smad4 leads to attenuated and transient responses (primarily tumor-suppressive 
ones), increased complex formation between pSmad2 and potential binding factors may cause 

 18

Appendices

24



higher and prolonged tumor-promoting responses. Consequently, in cancers, an imbalance 
between tumor-suppressing responses by Smad4 and tumor-promoting responses by potential 
binding factors may explain the paradox of TGF-β.  

 

CONCLUSIONS 
In this work we have presented a mathematical description of the TGF-β signaling 

pathway that is more comprehensive and more realistic than the previous computational models; 
it integrates extracellular signal transduction and intracellular signal transmission, and includes 
some reaction mechanisms modified from previous models to be better aligned with current 
knowledge of the TGF-β pathway. The model, which shows good fit to multiple sources of 
experimental data, simultaneously, was also validated against several totally different, 
independent sets of data from different sources, without adjusting any model parameters.  
Extensive analysis of the model (parametric sensitivity and model predictions under various 
physiological conditions) has provided insight into basic characteristics of the TGF-β signaling 
system.  

We believe that our model also yields new insights into the relationship between ligand 
stimulation and corresponding responses via binding of TGF-β to its receptor at the cell surface 
and the activation of downstream effectors in the signaling cascade; it also yields new insights 
into molecular TGF-β-induced response characteristics that distinguish between normal and 
cancer cells.  Furthermore, these results provide some clues that may be helpful in unraveling 
long-standing questions about the seemingly contradictory roles of TGF-β during cancer 
progression. However, the model is still has some limitations. We plan to expand the current 
model first to incorporate the effect of crosstalk among other important signaling cascades, and 
later gene expression mechanisms.  Our future plans also include focusing on prostate cancer 
(PCa), customizing this computation model for the PCa cell lines available in our laboratory, and 
using the models for a model-guided experimental study of the role of TGF-β during PCa 
progression. 
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Table Legends 
 
Table 1. Model equations 
Table 2. Model parameters 
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Table 1  Model equations (continued) 
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Table 1.  Model equations 
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Table 2. Model parameters 
 

parameter Reaction Step Value Unit Identifiability 
k1a ligand binding  6.60E-03 molecule-1· min-1 unidentifiable 
k1d dissociation 2.98E-01 min-1 N/A 
k2a association (RI-RII*) 6.60E-03 molecule-1· min-1 unidentifiable 
k2d dissociation 2.98E-01 min-1 N/A 
k3int internalization (Rc) 3.95E-01 min-1 unidentifiable 
k4a association (Rc-S2) 1.50E-04 molecule-1· min-1 unidentifiable 
k4d dissociation 9.71E-01 min-1 unidentifiable 
k5cat turnover (pS2) 4.48E+04 min-1 N/A 
k6a association (pS2-S4) 6.00E-03 molecule-1· min-1 unidentifiable 
k6d dissociation 1.46E+03 min-1 N/A 

k7imp nuclear import (pS2S4) 8.10E-01 min-1 unidentifiable 
k8dp dephosphorylation (pS2S4) 2.52E-02 min-1 N/A 
k9d dissociation (S2-S4) 1.01E-01 min-1 unidentifiable 

k10imp nuclear import (S2) 1.62E-01 min-1 N/A 
k10exp nuclear export (S2) 3.48E-01 min-1 N/A 
k11imp nuclear import (S4) 2.01E-02 min-1 unidentifiable 
k11exp nuclear export (S4) 1.74E-01 min-1 N/A 
k12syn protein synthesis (RII) 8.00E+00 molecule·min-1·cell-1 N/A 
k12deg degradation (RII) 2.80E-02 min-1 N/A 
k13syn protein synthesis (RI) 8.00E+00 molecule·min-1·cell-1 N/A 
k13deg degradation (RI) 2.80E-02 min-1 N/A 
k14syn protein synthesis (S2) 2.74E+01 molecule·min-1·cell-1 N/A 
k14deg degradation (S2) 6.46E-04 min-1 N/A 
k15syn protein synthesis (S4) 5.00E+01 molecule·min-1·cell-1 N/A 
k15deg degradation (S4) 1.20E-03 min-1 N/A 
k16deg constitutive deg (Rc) 2.80E-02 min-1 N/A 
k16lid ligand-induced deg (Rc) 3.95E-01 min-1 N/A 
k17imp nuclear import (pS2) 5.03E-01 min-1 identifiable 
k18a association (pS2-S4) 1.67E-04 molecule-1· min-1 unidentifiable 
k18d dissociation 9.09E-01 min-1 unidentifiable 
k19dp dephosphorylation (pS2) 2.52E-02 min-1 N/A 
k20lid ligand-induced deg (pS2) 5.40E-03 min-1 identifiable 
k21int internalization (RII) 3.95E-01 min-1 N/A 
k21rec recycling (RII) 3.95E-02 min-1 N/A 
k22int internalization (RI) 3.95E-01 min-1 N/A 
k22rec recycling (RI) 3.95E-02 min-1 N/A 
k23rec recycling (Rc) 3.95E-02 min-1 N/A 

 

 27

Appendices

33



Figure Legends 
 
Figure 1. Schematic representation of the pathway components in the integrated model. Numbers 

in the cartoon refer to the chemical reaction indices in Table 1.  
 
Figure 2. Model fit to experimental data: (A) total phosphorylated Smad2 in the nucleus [17], (B) 

total phosphorylated Smad2 in the cytoplasm [27], (C) total nuclear Smad2 [26], (D) total 
cytoplasmic Smad2 [27], and (E) total nuclear Smad4 [27] in response to TGF-β 
stimulation.   

 
Figure 3. Model validation: (A) total cellular pSamd2 [40]; (B) ratio of cellular pSmad2 to total 

Smad2 in response to the step input of TGF-β [38]; (C) ratio of cellular pSmad2 to total 
Smad2 in response to the pulse input of TGF-β [38]; (D) total cytoplasmic Smad4 [27]. 

 
Figure 4. Model parameter sensitivities for select parameters with the greatest influence on 

phosphorylated Smad2-Smad4 complex in the nucleus. Parameters with maximum 
normalized sensitivity coefficients exceeding 0.5 in absolute value at any point in time 
are shown. 

 
Figure 5. The effect of blocking translocation of monomeric pSmad2 (red) or heteromeric 

pSmad2 (blue) 
 
Figure 6. The effect of variations in the rate of Smad2 phosphorylation (A), nuclear pSmad2-

Smad4 association (B), pSmad2 degradation (C), nuclear pSmad2 dephosphorylation (D), 
and nuclear import of pSmad2 (E) on the dynamics of nuclear pSmad2-Smad4 complex. 
Each indicated parameter value was increased (blue) or decreased (red) 10 fold.  

 
Figure 7. The effect of different concentrations of TGF-β on the dynamic responses of 

internalized activated receptor complex (A) and activated Smad2-Smad4 complex in the 
nucleus (B) under normal conditions, and internalized activated receptor complex (C), 
and activated Smad2-Smad4 complex in the nucleus (D) under cancerous conditions with 
10-fold reduction in initial levels and protein synthesis rate constants of both Type I and 
Type II receptors. 

 
 
Figure 8. In silico mutation results: Responses of internalized activated receptor complex (A) and 

nuclear pSmad-Smad4 complex (B) to 10-fold reduction in initial levels and protein 
synthesis rate constants of both Type I and Type II receptors. (C) Temporal profiles of 
phosphorylated Smad2 in HaCaT cells (red, from Lo and Massague [40]), LNCaP cells 
(blue, our experiments) and C4-2 cells (green, our experiments) in response to 200pM 
(for A) or 400pM (for B and C) of TGF-β. All data points were normalized with respect 
to the maximum intensity value of pSmad2 of each profile. 

 
Figure 9. Model predictions for nuclear Smad4 (A) and nuclear pSmad2-Smad4 complex (B) 

upon TGF-β stimulation (80pM) under cancerous conditions; 10-fold reduction in the 
initial levels and the protein synthesis rate constants of both Type I and Type II, and 10-
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fold increase in rates of degradation of either Smad4 (A: red; B: green) or pSmad2 (B, 
blue) or both (B, red). 

 
Figure 10. Alternative TGF-β-induced responses determined by nuclear pSmad2-binding 

partners. While Smad4 forms transcriptional complexes with receptor-phosphorylated 
Smad2/3 and mediates antiproliferative responses, TIF1γ specifically recognizes 
receptor-activated Smad2/3 and mediates differentiation of hematopoietic 
stem/progenitor cells. (Adapted from He et al. [51]) 
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Figure 2A.  
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2C.  
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Figure 3A.  
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Figure 6A. 
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6C. 
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Figure 7A & 7B 
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Figure 7C & 7D 

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time (min)

R
el

at
iv

e 
C

on
ce

nt
ra

tio
n pRcomplex

 int

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Time (min)

R
el

at
iv

e 
C

on
ce

nt
ra

tio
n pS2S4nuc 0.02pM

0.2pM
2pM
20pM

0.02pM
0.2pM
2pM
20pM

C

D

 
 
Figure 7 

 42

Appendices

48



Figure 8A. 
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